jueves, 12 de marzo de 2015

PROCESOS TERMODINÁMICOS

Los procesos termodinámicos comprenden el comportamiento y relación que se da entre las temperaturas, presión y el volumen es importante en diversos procesos industriales.


TERMODINÁMICA:
También es conocida como el movimiento del calor, en esta rama de la física se estudia la transferencia de calor en trabajo mecánico y viceversa. su principal base es la conservación de la energía.
Nos proporciona una teoría básica que nos sirve para entender y poder diseñar maquinas térmicas (refrigeradores, cohetes, etc.).

SISTEMA TERMODINÁMICO:
Es una parte del universo que se separa con la finalidad poderla estudiar. Para ello se aísla de los alrededores a través de límites o fronteras, de tal manera que todo lo que se encuentra fuera de lo delimitado se denomina alrededores.


a) Frontera: Es el limite que separa al sistema de lo alrededores, casi siempre son paredes que pueden ser diatérmicas o adiabáticas.

b) Pared diatérmicas: Es una conductora de calor, ésta permite el intercambio de calor entre el sistema y sus alrededores y al revés.

c) Pared adiabática: Es caracterizada por NO permitir la interacción térmica del sistema con los alrededores. Es construida de materiales no conductores del calor como porcelana o asbesto.

d) Equilibrio termodinámico: Se alcanza cuando después de cierto tiempo de poner en contacto un sistema de baja temperatura con otro sistema a mayor temperatura se iguala, por lo tanto existe un intercambio de calor, las propiedades de presión, densidad y temperatura cuando se encuentran en este punto dejan de variar.

e) Energía interna (Ei): Es la energía contenida en el interior de las sustancias. Es la suma de energía cinética y potencial de las moléculas individuales que la forman. La mayoría de las veces se cumple cuanto mayor sea la temperatura de un sistema también lo será su energía interna.
La energía interna se hace presente en las sustancias combustibles y es proporcional a la masa.

EQUIVALENTE MECÁNICO DEL CALOR

Fue establecido por un físico ingles llamado James Prescott Joule (1818-1889), es autor de importantes trabajos sobre la TEORÍA MECÁNICA DEL CALOR, a mediados del sigo XIX. Demostró que cierta variación de temperatura indica un cambio de energía interna y aparece que se pierde determinada cantidad de energía molecular.
Después de varios experimentos en los cuales todos los resultados le daban 1J = 0.24 cal o 1 cal = 4.2J, concluyo que la energía mecánica y la energía que causaba la diferencia de temperatura eran equivalentes.
 

PRIMERA LEY DE LA TERMODINÁMICA

Esta ley dice que la variación de la energía interna de un sistema es igual a la energía que transfieren o reciben los alrededores en forma de calor y trabajo, de forma tal que se cumple la energía no se crea ni se destruye, solo se transforma.

 

La primera ley de la termodinámica se muestra matemáticamente de la siguiente manera:



a) Peso termodinámico:Es cuando la temperatura, presión o volumen de un gas varían. Los procesos termodinámicos se clasifican en:
 
 

PROCESO ISOTÉRMICO

Se presenta cuando la temperatura del sistema, permanece constante independientemente de los cambio de presión o volumen que sufran.Este proceso se rige por la ley de Boyle-Mariotte de Robert Boyle (1626-1691), Físico Químico irlandés conocido por sus experimentos acerca de las propiedades de los gases
y Edme Mariotte (1620-1684), Físico Francés que descubrió la ley que relación la presión y el volumen de los gases a temperatura constante.Si un proceso isotérmico formado por un gas experimenta una expansión isotérmica, para que la temperatura permanezca constante la cantidad de calor recibido debe ser igual al trabajo que realiza durante la expansión. Pero si presenta una compresión isotérmica, para que la temperatura también permanezca constante el gas tiene que liberar una cantidad de calor igual al trabajo desarrollado sobre él.
La temperatura no cambia, su energía interna (Ei), son constantes y su variación de energía interna (ΔEi) es igual a cero, por lo que se cumple que (Ei es constante) (ΔEi = 0 ) Q=Tr.

PROCESO ISOBÁRICO

Es cuando hay una variación del volumen o temperatura y la presión permanece constante, no importando si el gas sufre una compresión o una expansión. Este proceso rige por la Ley de Charles: Jackes A. Charles ( 1742-1822). Químico, físico y aeronauta Frances, que fue el primero en hacer mediciones acerca de los gases que se expanden al aumentar la temperatura.
Las ecuaciones para el proceso isobárico son:

 

PROCESO ISOCÓRICO

Se presenta cuando el volumen del sistema permanece constante. Ya que la variación del volumen es cero, no se realiza trabajo sobre el sistema ni de éste último de sobre los alrededores, por lo que se cumple Tr = 0 Y ΔEi = Q, esto indica que todo el calor suministrado aumentara en la misma proporción a la energía interna, en general esto se presenta cuando un gas se calienta dentro de un recipiente con volumen fijo.
Cuando se calientan dos masas iguales de gas, a una presión constante y otra a volumen constante, para que logren el mismo incremento de temperatura se requiere proporcionar mayor calor al sistema a presión constante (Qp>Qv). Ello se debe a que en el proceso isobárico el calor suministrado se usa para aumentar la energía interna y efectuar trabajo, mientras que en el proceso isocórico todo el calor se usa para incrementar exclusivamente la energía interna.

PROCESO ADIABÁTICO

Ocurre cuando el sistema no crea ni recibe calor, cumpliéndose que (Q=0) y ΔEi = -Tr , aun cuando el gas puede presentar expansión o comprensión.
En resumen las condiciones que se tienen que cumplir para los procesos son termodinámicos son:

 

CALENTAMIENTO POR COMPRESIÓN

Si un gas sufre compresión rápida, disminuye su volumen, se produce calor y se incrementa la temperatura.
Ejemplos:
ISOBÁRICO: Un dispositivo cilindro émbolo contiene un gas que está inicialmente a 1 Mpa y ocupa 0.020 m3. El gas se expande hasta un volumen final de 0.040 m3. Determine el trabajo obtenido en Kj para un proceso isobárico (a presión constante).

 


Para calcular el trabajo en procesos a presión constante se utiliza la Ec.
W1-2 = P (V2 – V1) =
Se tienen los volúmenes en metros cúbicos y la presión en unidades de mega pascales, hay que utilizar unidades homogéneas: Conociendo que un Kpa = Kj/ m3, se puede convertir la presión de Mpa a Kpa.
1 Mpa * 1000 Kpa = 1000 Kpa. 1 Mpa
Se sustituye en la Ec.4: W1-2 = P (V2 – V1) = 1000 Kj/ m3 *(0.040 m3 – 0.020 Kj/ m3)
W1-2 = 20Kj
Un gas ideal en el que C v = 5.n.R/2 es trasladado del punto "a" al punto "b" Siguiendo los caminos acb, adb y ab, la presión y el volumen finales son P 2 = 2P 1 y V 2 = 2V 1 . a) Calcular el calor suministrado al gas, en función de n, R y T 1 en cada proceso. b) Cual es la capacidad calorífica en función de R para el proceso ab.

Aplicando el primer principio de la termodinámica podemos escribir:

Para cualquiera de los procesos que hemos de considerar, la variación de energía interna será el mismo puesto que U es una función de estado y solo depende de los puntos inicial y final del proceso. Por tratarse de un gas perfecto, podemos escribir:
Pero, de la ecuación de los gases perfectos, obtenemos:
por lo que, sustituyendo:
Calculamos el trabajo en cada uno de los procesos:


 

 
En el caso de W ab no conocemos el tipo de proceso que sigue el gas, pero podemos ver que el trabajo vendrá dado por:
Obtenidos todos los datos necesarios podemos calcular el calor suministrado al gas en cada uno de los procesos:
Finalmente, la capacidad calorífica para el proceso ab será, en realidad, la capacidad calorífica media que podemos calcular mediante: 
Un sistema cerrado, inicialmente en reposo sobre la tierra, es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 200KJ. Durante este proceso hay una transferencia neta de energía por calor desde el sistema al entorno de 30KJ. Al final del proceso el sistema tiene una velocidad de 60m/s y una altura de 60m. La masa del sistema es 25Kg, y la aceleración local de la gravedad es g=9,8m/s2. Determinar el cambio de energía interna del sistema para el proceso.

MOVIMIENTO ONDULATORIO

En física, una onda consiste en la propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, a través de dicho medio, implicando un transporte de energía sin transporte de materia. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal e, incluso, inmaterial como el vacío.
La magnitud física cuya perturbación se propaga en el medio se expresa como una función tanto de la posición como del tiempo  \psi(\vec{r},t) . Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:



\nabla^2 \psi (\vec{r},t) = \frac{1}{v^2} {\partial^2 \psi \over\partial t^2}(\vec{r},t)
donde  es la velocidad de propagación de la onda. Por ejemplo, ciertas perturbaciones de la presión de un medio, llamadas sonido, verifican la ecuación anterior, aunque algunas ecuaciones no lineales también tienen soluciones ondulatorias, por ejemplo, un solitón.

ELEMENTOS DE UNA ONDA

Cresta: La cresta es el punto de máxima elongación o máxima amplitud de la onda; es decir, el punto de la onda más separado de su posición de reposo.
Período (): El periodo es el tiempo que tarda la onda en ir de un punto de máxima amplitud al siguiente.
Amplitud (): La amplitud es la distancia vertical entre una cresta y el punto medio de la onda. Nótese que pueden existir ondas cuya amplitud sea variable, es decir, crezca o decrezca con el paso del tiempo.
Frecuencia (): Número de veces que es repetida dicha vibración por unidad de tiempo. En otras palabras, es una simple repetición de valores por un período determinado.




Valle: Es el punto más bajo de una onda.
Longitud de onda (): Es la distancia que hay entre el mismo punto de dos ondulaciones consecutivas, o la distancia entre dos crestas consecutivas.
Nodo: es el punto donde la onda cruza la línea de equilibrio.
Elongación (): es la distancia que hay, en forma perpendicular, entre un punto de la onda y la línea de equilibrio.
Ciclo: es una oscilación, o viaje completo de ida y vuelta.
Velocidad de propagación (): es la velocidad a la que se propaga el movimiento ondulatorio. Su valor es el cociente de la longitud de onda y su período.
 

ONDAS LONGITUDINALES Y TRANSVERSALES

Longitudinales: Una onda longitudinal es una onda en la que el movimiento de oscilación de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto.
 


Transversales: Una onda transversal es una onda en movimiento que se caracteriza porque sus oscilaciones ocurren perpendiculares a la dirección de propagación. Si una onda transversal se mueve en el plano x-positivo, sus oscilaciones van en dirección arriba y abajo que están en el plano y-z.

RASONANCIA

Es el fenómeno que se produce cuando los cuerpos vibran con la misma frecuencia, uno de los cuales se puso a vibrar al recibir las frecuencias del otro. Para entender el fenómeno de la resonancia existe un ejemplo muy sencillo, Supóngase que se tiene un tubo con agua y muy cerca de él (sin entrar en contacto) tenemos un diapasón, si golpeamos el diapasón con un metal, mientras echan agua en el tubo, cuando el agua alcance determinada altura el sonido será más fuerte; esto se debe a que la columna de agua contenida en el tubo se pone a vibrar con la misma frecuencia que la que tiene el diapasón, lo que evidencia por qué las frecuencias se refuerzan y en consecuencia aumenta la intensidad del sonido. Un ejemplo es el efecto de afinar las cuerdas de la guitarra, puesto que al afinar, lo que se hace es igualar las frecuencias, es decir poner en resonancia el sonido de las cuerdas.

ALTURA

Indica si el sonido es grave, agudo o medio, y viene determinada por la frecuencia fundamental de las ondas sonoras, medida en ciclos por segundo o hercios (Hz).
vibración lenta = baja frecuencia = sonido grave.
vibración rápida = alta frecuencia = sonido agudo.
Para que los humanos podamos percibir un sonido, éste debe estar comprendido entre el rango de audición de 20 y 20.000 Hz. Por debajo de este rango tenemos los infrasonidos y por encima los ultrasonidos. A esto se le denomina rango de frecuencia audible. Cuanta más edad se tiene, este rango va reduciéndose tanto en graves como en agudos.
En la música occidental se fueron estableciendo tonos determinados llamados notas, cuya secuencia de 12 (C, C#, D, D#, E, F, F#, G, G#, A, A#, B) se va repitiendo formando octavas, en cada una de éstas se duplica la frecuencia. La diferencia entre distintas notas se denomina intervalo.
 

DURACIÓN

Es el tiempo durante el cual se mantiene un sonido. Podemos escuchar sonidos largos, cortos, muy cortos, etc. Los únicos instrumentos acústicos que pueden mantener los sonidos el tiempo que quieran, son los de cuerda frotada, como el violín, y los de viento (utilizando la respiración circular o continua); pero por lo general, los instrumentos de viento dependen de la capacidad pulmonar, y los de cuerda según el cambio del arco producido por el ejecutante.
 

INTENSIDAD

Es la cantidad de energía acústica que contiene un sonido, es decir, lo fuerte o suave de un sonido. La intensidad viene determinada por la potencia, que a su vez está determinada por la amplitud y nos permite distinguir si el sonido es fuerte o débil.
La intensidad del sonido se divide en intensidad física e intensidad auditiva, la primera esta determinada por la cantidad de energía que se propaga, en la unidad de tiempo, a través de la unidad de área perpendicular a la dirección en que se propaga la onda. Y la intensidad auditiva que se fundamenta en la ley psicofísica de Weber-Fechner, que establece una relación logarítmica entre la intensidad física del sonido que es captado, y la intensidad física mínima audible por el oído humano.
Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (140 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibelios (dB) en honor al científico e inventor Alexander Graham Bell.

TIMBRE

Una misma nota suena distinta si la toca una flauta, un violín, una trompeta, etc. Cada instrumento tiene un timbre que lo identifica o lo diferencia de los demás. Con la voz sucede lo mismo. El sonido dado por un hombre, una mujer, un niño tienen distinto timbre. El timbre nos permitirá distinguir si la voz es áspera, dulce, ronca o aterciopelada. También influye en la variación del timbre la calidad del material que se utilice. Así pues, el sonido será claro, sordo, agradable o molesto.