CALOR Y TEMPERATURA
CALOR
El calor es una cantidad de energía y es una expresión del movimiento de las moléculas que componen un cuerpo.
Al aumentar el calor, la temperatura aumenta
TEMPERATURA
La temperatura de un gas ideal monoatómico es una medida relacionada con la energía cinética promedio de sus moléculas al moverse. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, su temperatura aumenta.Por ejemplo, si hacemos hervir agua en dos recipientes de diferente tamaño, la temperatura alcanzada es la misma para los dos, 100° C, pero el que tiene más agua posee mayor cantidad de calor.
El calor es lo que hace que la temperatura aumente o disminuya.
Si añadimos calor, la temperatura aumenta. Si quitamos calor, la temperatura disminuye.
DIFERENCIAS ENTRE CALOR Y TEMPERATURA
1.- La temperatura es la medida del calor de un cuerpo (y no la cantidad de calor que este contiene o puede rendir).
2.- La temperatura es una magnitud que refleja el nivel térmico de un cuerpo (su capacidad para ceder energía calorífica) y el calor es la energía que pierde o gana en ciertos procesos (es un flujo de energía entre dos cuerpos que están a diferentes temperaturas).
3.- Los cuerpos están fríos cuando su temperatura es baja, y calientes cuando su temperatura es alta. Esta temperatura se mide de forma precisa mediante un aparato llamado termómetro.
DILATACIÓN
Se denomina dilatación térmica al aumento de longitud, volumen o alguna otra dimensión métrica que sufre un cuerpo físico debido al aumento de temperatura que se provoca en él por cualquier medio. La contracción térmica es la disminución de propiedades métricas por disminución de la misma.
EJEMPLOS DE DILATACIÓN
•La separación que se deja entre cada tramo de las vías del tren.
•La torre Eiffel cambia de tamaño según la temporada del año.
•Día a día aumenta el nivel del mar en parte por la dilatación del líquido debida al aumento de la temperatura global por el cambio climático.
DILATACIÓN LINEAL
La dilatación lineal es aquella en la cual predomina la variación en una única dimensión, o sea, en el ancho, largo o altura del cuerpo.Para estudiar este tipo de dilatación, imaginemos una barra metálica de longitud inicial L0 y temperatura θ0.
Si calentamos esa barra hasta que la misma sufra una variación de temperatura Δθ, notaremos que su longitud pasa a ser igual a L
Pero si aumentamos el calentamiento, de forma de doblar la variación de temperatura, o sea, 2Δθ, entonces observaremos que la dilatación será el doble (2 ΔL).
Podemos concluir que la dilatación es directamente proporcional a la variación de temperatura.
Imaginemos dos barras del mismo material, pero de longitudes diferentes. Cuando calentamos estas barras, notaremos que la mayor se dilatará más que la menor.
Podemos concluir que, la dilatación es directamente proporcional al largo inicial de las barras.
Cuando calentamos igualmente dos barras de igual longitud, pero de materiales diferentes, notaremos que la dilatación será diferentes en las barras.
Podemos concluir que la dilatación depende del material (sustancia) de la barra.
DILATACIÓN DE ÁREA
Es aquella en que predomina la variación en dos dimensiones, o sea, la variación del área del cuerpo debido a la intervención de un cambio de temperatura.
Este fenómeno se representa con la siguiente fórmula;
ΔA=βAoΔT
Donde;
ΔA representa el aumento de área.
β representa la dilatación del material.
Ao es el área inicial.
ΔT es el incremento de temperatura.
DILATACIÓN VOLUMÉTRICA
Es aquella en que predomina la variación en tres dimensiones, o sea, la variación del volumen del cuerpo.
Para estudiar este tipo de dilatación, podemos imaginar un cubo metálico de volumen inicial V0 y la temperatura inicial θ0. Si lo calentamos hasta la temperatura final, su volumen pasará a tener un valor final igual a V.
La dilatación volumétrica ocurrió de forma análoga a la de la dilatación lineal; por tanto podemos obtener las siguientes ecuaciones:
CAMBIO DE ESTADO
En física y química se denomina cambio de estado la evolución de la materia entre varios estados de agregación sin que ocurra un cambio en su composición. Los tres estados más estudiados y comunes en la Tierra son el sólido, el líquido y el gaseoso; no obstante, el estado de agregación más común en nuestro universo es el plasma, material del que están compuestas las estrellas (si descartamos la materia oscura).
CAMBIOS DE ESTADO DE AGREGACIÓN DE LA MATERIA
Son los procesos en los que un estado de la materia cambia a otro manteniendo una semejanza en su composición. A continuación se describen los diferentes cambios de estado o transformaciones de fase de la materia:
- Fusión: Es el paso de un sólido al estado líquido por medio del calor; durante este proceso endotermico (proceso que absorbe energía para llevarse a cabo este cambio) hay un punto en que la temperatura permanece constante. El "punto de fusión" es la temperatura a la cual el sólido se funde, por lo que su valor es particular para cada sustancia. Cuando dichas moléculas se moverán en una forma independiente, transformándose en un líquido.
- Solidificación: Es el paso de un líquido a sólido por medio del enfriamiento; el proceso es exotérmico. El "punto de solidificación" o de congelación es la temperatura a la cual el líquido se solidifica y permanece constante durante el cambio, y coincide con el punto de fusión si se realiza de forma lenta (reversible); su valor es también específico.
- Vaporización y ebullición: Son los procesos físicos en los que un líquido pasa a estado gaseoso. Si se realiza cuando la temperatura de la totalidad del líquido iguala al punto de ebullición del líquido a esa presión continuar calentándose el líquido, éste absorbe el calor, pero sin aumentar la temperatura: el calor se emplea en la conversión del agua en estado líquido en agua en estado gaseoso, hasta que la totalidad de la masa pasa al estado gaseoso. En ese momento es posible aumentar la temperatura del gas.
- Condensación: Se denomina condensación al cambio de estado de la materia que se pasa de forma gaseosa a forma líquida. Es el proceso inverso a la evaporación. Si se produce un paso de estado gaseoso a estado sólido de manera directa, el proceso es llamado sublimación inversa. Si se produce un paso del estado líquido a sólido se denomina solidificación.
- Sublimación: Es el proceso que consiste en el cambio de estado de la materia sólida al estado gaseoso sin pasar por el estado líquido. Al proceso inverso se le denomina Sublimación inversa; es decir, el paso directo del estado gaseoso al estado sólido. Un ejemplo clásico de sustancia capaz de sublimarse es el hielo seco.
LEY DE CHARLES
LEY DE BOYLE-MARIOTTE
La Ley de Boyle-Mariotte (o Ley de Boyle), formulada por Robert Boyle y Edme Mariotte, es una de las leyes de los gases ideales que relaciona el volumen y la presión de una cierta cantidad de gas mantenida a temperatura constante. La ley dice que el volumen es inversamente proporcional a la presión:
donde es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen disminuye, mientras que si la presión disminuye el volumen aumenta. El valor exacto de la constante k no es necesario conocerlo para poder hacer uso de la Ley; si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:
Además se obtiene despejada que:
Donde:
= Presión Inicial
= Presión Final
= Volumen Inicial
= Volumen Final
Esta Ley es una simplificación de la Ley de los gases ideales particularizada para procesos isotermos.
Junto con la ley de Charles y Gay-Lussac y la ley de Graham, la ley de Boyle forma las leyes de los gases, que describen la conducta de un gas ideal. Las tres leyes pueden ser generalizadas en la ecuación universal de los gases.
LEY DE GAY LUSSAC
Esta Ley fue enunciada por Joseph Louis Gay-Lussac a principios de 1800. Establece que la presión de un volumen fijo de gas, es directamente proporcional a su temperatura.
¿POR QUE OCURRE ESTO?
Al aumentar la temperatura, las moléculas del gas se mueven más rápidamente y por tanto aumenta el número de choques contra las paredes, es decir aumenta la presión ya que el recipiente es de paredes fijas y su volumen no puede cambiar.
Gay-Lussac descubrió que en cualquier momento de este proceso, el cociente entre la presión y la temperatura siempre tenía el mismo valor:
Supongamos que tenemos un gas que se encuentra a una presión P1 y a una temperatura T1 al comienzo del experimento. Si aumentamos la temperatura hasta un nuevo valor T2, entonces la presión se incrementará a P2, y se cumplirá:
LEY DE CHARLES
En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y observó que cuando se aumentaba la temperatura el volumen del gas también aumentaba y que al enfriar el volumen disminuía.
¿POR QUE OCURRE ESTO?
Cuando aumentamos la temperatura del gas las moléculas se mueven con más rapidez y tardan menos tiempo en alcanzar las paredes del recipiente. Esto quiere decir que el número de choques por unidad de tiempo será mayor. Es decir se producirá un aumento (por un instante) de la presión en el interior del recipiente y aumentará el volumen (el émbolo se desplazará hacia arriba hasta que la presión se iguale con la exterior).
Lo que Charles descubrió es que si la cantidad de gas y la presión permanecen constantes, el cociente entre el volumen y la temperatura siempre tiene el mismo valor.
Supongamos que tenemos un cierto volumen de gas V1 que se encuentra a una temperatura T1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V2, entonces la temperatura cambiará a T2, y se cumplirá:
GASES IDEALES Y ECUACION
LEY DE LOS GASES IDEALES
La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales, sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
Partiendo de la ecuación de estado:
P.V=n . R.T
Tenemos que P .V =R
n . T
Donde R es la constante universal de los gases universales
P1. V1 = P2 . V2 =R
n1 . T1 n2.T2
Para una misma masa gaseosa (es por tanto el numero de moles (n) es constante),
Podemos afirmar que existe una constante proporcional a la presión y volumen del gas, y inversamente proporcional a su temperatura.
P1. V1 = P2 . V2 = P1. V1 = P2 . V2
T1 . n1 T2. n2 T1 T2
P = Presión absoluta
V = Volumen
n = Moles de gas
R = Constante universal de los gases ideales
T = Temperatura absoluta
ECUACIÓN DEL ESTADO GASEOSO
La combinación de la Ley de Boyle y la Ley de Charles nos permite establecer una relación matemática entre el volumen, temperatura y presión de una muestra determinada de gas.Esta relación queda formulada así:
"La razón entre el producto Presión - Volumen y la Temperatura es una constante".
PV=K
T
Esta masa gaseosa puede expresarse en términos de una condición inicial y una condición final:
P1. V1 = P2 . V2
T1 T2
P1. V1 = P2 . V2
T1 T2
que representa la ecuación general del estado gaseoso y en ella están incluidos los tres parámetros que determinan el comportamiento de los gases, donde:
P se expresa en atm, mmHg o psig
T se expresa en kelvins
V se expresa en litros, sus múltiplos y submúltiplos, cm3.
T se expresa en kelvins
V se expresa en litros, sus múltiplos y submúltiplos, cm3.
No hay comentarios:
Publicar un comentario